Veranstaltungen

Lecture with integrated exercise

Grundlagen des Maschinellen Lernens


Name in diploma supplement
Machine Learning Foundations
Organisational Unit
Lehrstuhl für Software-Engineering, insb. mobile Anwendungen
Lecturers
Prof. Dr. Volker Gruhn
Cycle
winter semester
SPW
4
Language
German
Participants at most
no limit
Participants

Preliminary knowledge

Grundlagen der Programmierung, Stochastik, Lineare Algebra, Analysis

Für dieses Modul werden Kenntnisse der Programmierung vorausgesetzt.

Contents

Die Vorlesung vermittelt einen allgemeinen Überblick über die wichtigsten Techniken des Maschinellen Lernens (ML). Es werden verschiedene Verfahren und die zugehörigen Algorithmen betrachtet. Der Fokus liegt auf Techniken des überwachten und unüberwachten Lernens. Darüber hinaus wird betrachtet, wie Daten zur Verwendung in ML-Komponenten analysiert und vorverarbeitet werden müssen.

Die folgenden Themen werden in der Vorlesung unter anderem behandelt:

  • Lineare Regression und Klassifikation
  • Nichtlineare Verfahren
  • Decision Trees und Support Vector Machines
  • Neuronale Netze und Deep Learning
  • Clustering
  • Dimensionsreduktion

Literature

  • Geron, Aurélien. 2019. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly.
  • Albon, Chris; Langenau, Frank. 2019. Machine Learning Kochbuch: Praktische Lösungen mit Python: von der Vorverarbeitung der Daten bis zum Deep Learning. O’Reilly.
  • Goodfellow, Ian; Yoshua Bengio; Aaron Courville. 2016. Deep Learning. MIT Press.
  • Griffiths, Dawn. 2008. Head First Statistics. O'Reilly Germany.

Teaching concept

Die Veranstaltung entspricht einem Vorlesungsanteil von 2 SWS und einem Übungsanteil von 2 SWS.

Lecture with integrated exercise: Grundlagen des Maschinellen Lernens (WIWI‑C1163)