Modul: Deep Learning in Energy (6 Credits) | |
---|---|
Name im Diploma Supplement | Deep Learning in Energy |
Verantwortlich | Prof. Dr. Florian Ziel |
Voraussetzungen | Siehe Prüfungsordnung. |
Workload | 180 Stunden studentischer Workload gesamt, davon:
|
Dauer | Das Modul erstreckt sich über 1 Semester. |
Qualifikationsziele | The students
|
Prüfungsmodalitäten | Equally weighted average of a group project and a presentation (usually about 20 minutes). |
Verwendung in Studiengängen |
|
Bestandteile |
|
Modul: Deep Learning in Energy (WIWI‑M0967) |
Vorlesung: Deep Learning in Energy (3 Credits) | |||
---|---|---|---|
Name im Diploma Supplement | Deep Learning in Energy | ||
Anbieter | Lehrstuhl für Data Science in Energy and Environment | ||
Lehrperson | Prof. Dr. Florian Ziel | ||
Semesterwochenstunden | 2 | Sprache | englisch |
Turnus | unregelmäßig | maximale Hörerschaft | 24 |
empfohlenes VorwissenGood knowledge of linear models as tought in Econometrics of Electricity Markets and R or python knowledge | |||
AbstractThe objective of the lecture is to provide a basic understanding of energy markets and systems such as deep learning based modeling methods with a focus on feed forward neural network and recurrent neural networks. The aim of this course is to understand and apply deep learning algorithms to real data using the pytorch library, to interpret and to visualize the results. | |||
Lehrinhalte
| |||
LiteraturangabenThe relevant material will be given during the course. Suggested reading:
| |||
didaktisches KonzeptLecture. The studied modeling an forecasting methods are applied on real data using pytorch. | |||
Vorlesung: Deep Learning in Energy (WIWI‑C1265) |
Übung: Deep Learning in Energy (3 Credits) | |||
---|---|---|---|
Name im Diploma Supplement | Deep Learning in Energy | ||
Anbieter | Lehrstuhl für Data Science in Energy and Environment | ||
Lehrperson | Prof. Dr. Florian Ziel | ||
Semesterwochenstunden | 2 | Sprache | englisch |
Turnus | unregelmäßig | maximale Hörerschaft | 24 |
empfohlenes VorwissenSee Lecture | |||
LehrinhalteSee Lecture | |||
LiteraturangabenSee Lecture | |||
didaktisches KonzeptTutorials. The students apply the learned methods in a own real data project in python utilizing pytorch. | |||
Übung: Deep Learning in Energy (WIWI‑C1266) |